愤怒的奶牛
测试数据来自 system/2308
作业已超过截止时间,您无法递交本题目。
时间限制:1秒 内存限制:256M
【问题描述】
奶牛贝西设计了一个游戏:“愤怒的奶牛”。游戏的原型是:有一些可爆炸的草堆分布在一条数轴的某些坐标上,玩家用弹弓把一头奶牛发射到数轴上。奶牛砸到数轴上的冲击波会引发附近的草堆爆炸。游戏的目标是玩家用一些奶牛炸掉所有的草堆。
有 \(N\) 个草堆在数轴的不同位置,坐标为 \(x_1,x_2,….,x_N\)。如果玩家以能量 \(R\) 把奶牛发射到坐标 \(x\),就会引爆半径 \(R\) 及以内的的草堆,即坐标范围 \([x-R,x+R]\) 的草堆都会燃爆。
现在有 \(K\) 头奶牛,每头奶牛的能量都是 \(R\),请计算如果要引爆所有的草堆,最小的 \(R\) 是多少?
【输入格式】
第一行:两个整数 \(N\) 和 \(K\)。
下面有 \(N\) 行,每行一个整数:\(x_1,x_2,….,x_N\),范围在 \([0…1,000,000,000]\)。
【输出格式】
输出最小可能的 \(R\)。
【输入输出样例】
Input
7 2
20
25
18
8
10
3
1
Output
5
【数据说明】
对于 \(100\%\) 的数据 \(1≤N≤50,000\),\(1≤K≤10\)。
【来源】
Mr.he